

C all

Semester project

Data-driven Analysis of City Scale Human-building Interaction

Yihan Wang **MSc Civil Engineering**

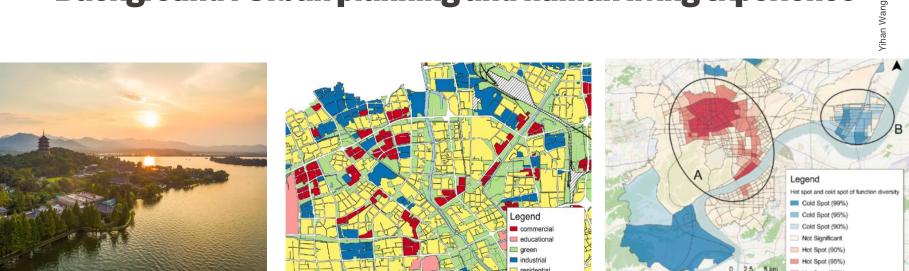
Supervisor: Andrew Sonta, Kanaha Shoji

polytechnique de Lausanne

École

fédérale

EPFL Background : Urban planning and human living experience



West Lake, Hangzhou, China

Hangzhou urban planning map^[1]

Hangzhou function diversity hot and cold spot map^[1]

Hot Spot (99%)

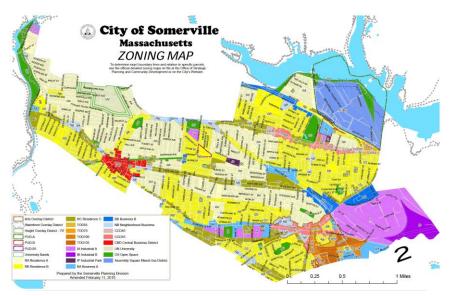
Extraordinary view existence \neq Good living experience !

1. Qiu, Yining, et al. "Understanding the urban life pattern of young people from delivery data." Computational Urban Science 1 (2021): 1-16.

EPFL Background

More challenging urban design exists...

• Euclidean zoning (areas with specific rules for building use)



Jeopardizing vibrant and socially resilient communities^[1] 2. Jacobs, J. (1961). The Death and Life of Great American Cities. New York. Question: What kind of urban design is considered benefiting internal individual residents and society?

Objective: Understanding human's

interaction with urban forms

OUTLINE

Data Exploration

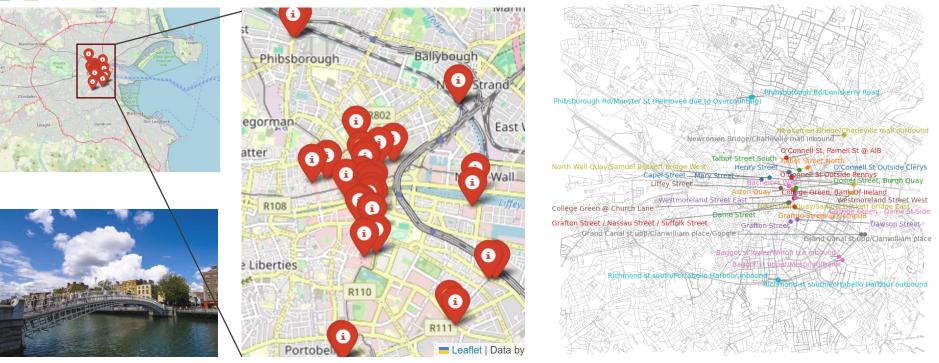
- Pedestrian Counts
- > Urban Forms
- > Other Features

Model Regression & Interpretation

EPFL Data – Pedestrian Counts : Sensor Locations

Dublin

Data



• 34 pedestrian counters

• Densely distributed around central region

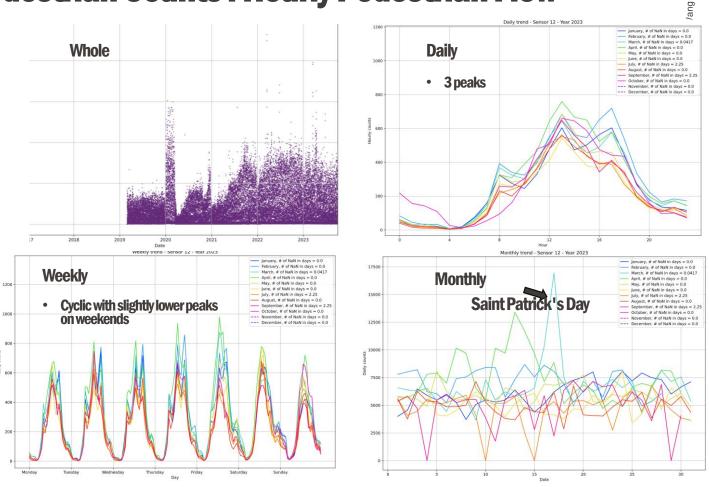
Yihan Wang

Sensor Locations on Street Network in a region in Dublin

EPFL Data – Pedestrian Counts : Hourly Pedestrian Flow

Sensor ID: 12

College Green, Bank of Ireland



OUTLINE

Data Exploration

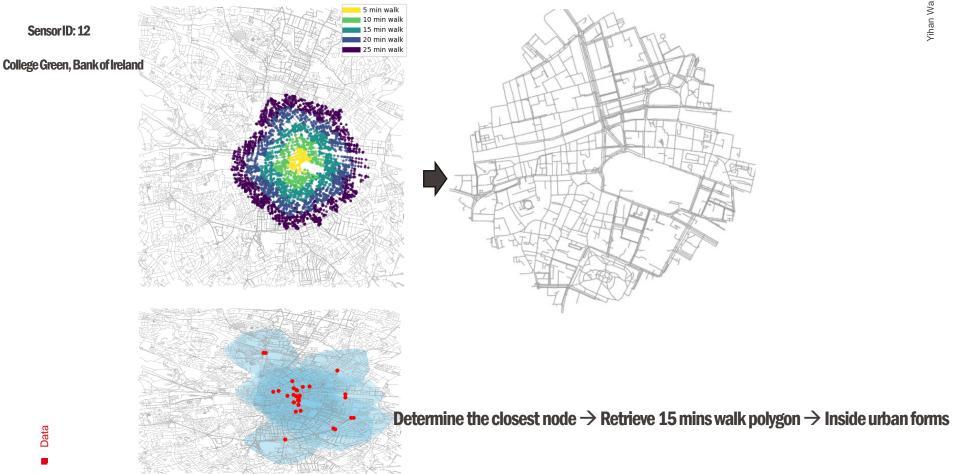
> Pedestrian Counts

Urban Forms

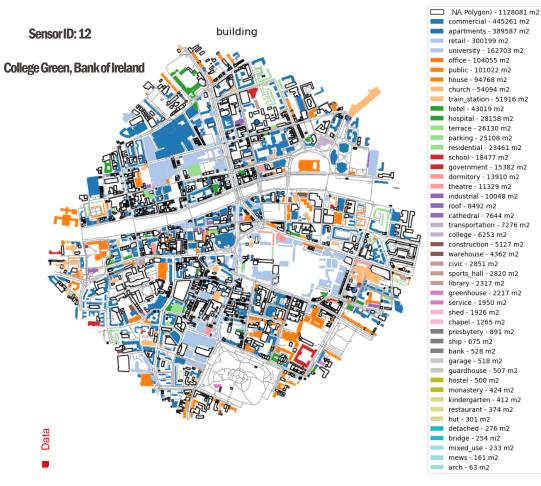
> Other Features

Model Regression & Interpretation

EPFL **Data - Urban Forms: From Counter Nearest Node Polygon**

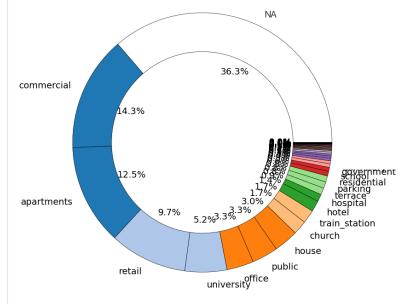


EPFL Data - Urban Forms: Polygon Urban Forms

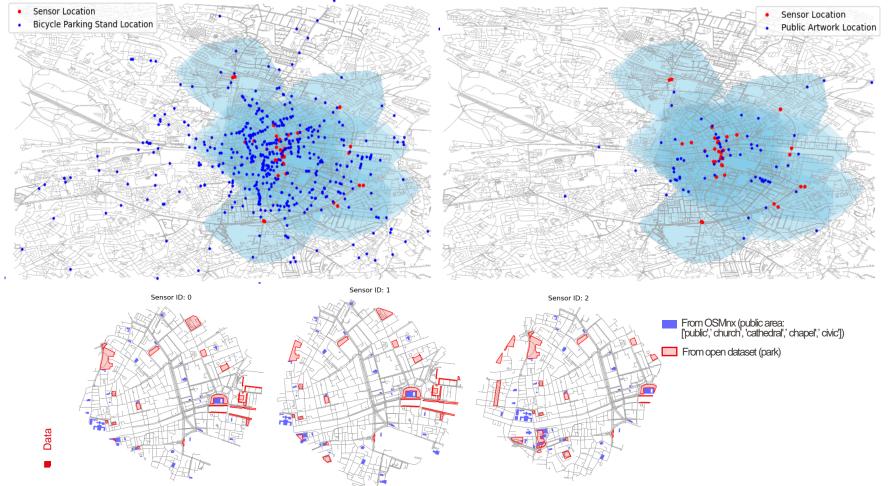


Total Area of Each Building Type (Ordered by Area) within the 15 min

walk distance from College Green Counter



EPFL Data - Urban Forms: Polygon Urban Forms



10

OUTLINE

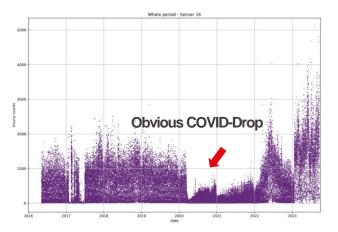
Data Exploration

- > Pedestrian Counts
- > Urban Forms
- > Other Features

Model Regression & Interpretation

EPFL Model – Data Preprocessing

• Filtering out data with COVID-19 restrictions: (\rightarrow 4115348 \times 135 dataframe)



Restrictions including:

- School Closing
- Workplace Closing
- Cancel Public Events
- Restrictions on Gatherings
- Close Public Transports
- Protection of elderly people

- Stay at Home Requirements
- Restrictions on Internal Movement
- International travel controls
- Restrictions on Gatherings
- Contact Tracing
- Facial Coverings

- One-hot encoding for categorical features
- **Z** score Standardization: $x_{i,j}' = \frac{x_{i,j} min(x_j)}{max(x_i) min(x_j)}$
- Normalization: $x'_{i,j} = \frac{x_{i,j} mean(x_j)}{std(x_j)}$
- Deal with NaN values: fill with feature means

EPFL Model – Setup

Interpretable model: linear regression

Dependent Variable		Hourly pedestrian counts		Perimeter Mean	Recreational	PopSum	distance	B15_Comm ercial_per	B5_others_ per	S15_street_le ngth_avg
Method		Ordinary Least Squares		Perimeter Stdev	Green View Mean	Men	feature_x	B15_Religi ous_per	S15_n	S15_circuity_ avg
Predictors		Degree	Footprint Proportion	Complexity Mean	Sky View Mean	Women	feature_y	O5_Walkab leLength_m	S15_m	S15_self_loop _proportion
сс	WS	Clustering	Footprint Mean	Complexity Stdev	Building View Mean	Elderly	nearest_x	O5_PublicTranspor tAccessCounts	S15_k_avg	S5_n
speed_u	Node Density	Closeness Centrality	Footprint Stdev	Building Count	Building View Stdev	Youth	nearest_y	O5_Amenity_Shan non_Entropy	S15_edge_ length_total	S5_m
speed_v	PageRank	Betweenness Centrality	Commercial	Food	Road View Mean	Children	O15_Walkabl eLength_m	B5_Accomm odation_per	S15_edge_ length_avg	S5_k_avg
rh	Street Length	Civic	Social	Healthcare	Road View Stdev	O15_Green Area_m2	O15_PublicTransp ortAccessCounts	B5_Comme rcial_per	S15_streets_per _node_avg	S5_edge_ length_total
temp_K	day_type	Entertainment	Perimeter Total	Institutional	Visual Complexity	n	O15_Amenity_Sha nnon_ Entropy	B5_Religious _per	S15_street_ length_total	S5_edge_length _avg

Features including: weather, urban form, network property, population...

13

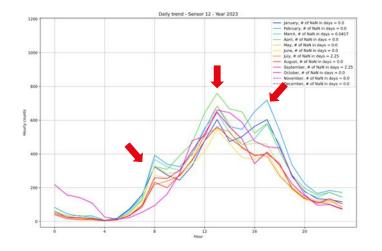
Yihan Wang

EPFL Model – Exploration

• Plain model: R² = 0.287

Model

• Baseline model: Categorizing hour in day: R² = 0.523



- Morning Peak: 7, 8, 9
- Lunch Peak: 12, 13, 14
- Evening Peak: 16, 17, 18

Hour categorization helps explaining the variation a lot!

Adding a predictor of 'year': $R^2 = 0.538$

Other temporal predictor remains unexplored

EPFL **Model – Exploration**

Baseline model: $R^2 = 0.523$

Exploring feature interactions: $R^2 = 0.545$

Included interactions

Intuition: For population groups, the fractions are more meaningful.

Model

Intuition: Young people may be influenced by day type more

	Men / PopSum	Youth * Commercial	<day_type *="" institutional=""></day_type>	< day_type * B15_Commercial_per >				
	Youth / PopSum	Youth * Entertainment	<day_type *="" recreational=""></day_type>	< day_type * B15_ Religious_per >				
	Children / PopSum	PopSum * Commercial	<day_type *="" o15_greenarea_m2=""></day_type>	< day_type * B5_ Religious_per >				
	day_type * morning_peak	PopSum * Entertainment	<day_type *="" o15_walkablelength_m=""></day_type>	<day_type *="" youth=""></day_type>				
	day_type * lunch_peak	PopSum * Building Count	< day_type*O5_WalkableLength_m >	<day_type *="" men=""></day_type>				
	day_type * evening_peak	<day_type *<br="">Commercial></day_type>	<day_type *="" b5_accommodation_per=""></day_type>	<day_type *="" women=""></day_type>				
Intrition: pooplo may baya different a ubio	< day_type * O15_PublicTransportAccessCounts >	<day_type *="" entertainment=""></day_type>	<day_type *="" b5_commercial_per=""></day_type>	<day_type *="" elderly=""></day_type>				
Intuition: people may have different public transport use behavior on holidays vs workdays	<day_type *="" o5_publictransportaccesscount=""></day_type>	<day_type *="" building="" count=""></day_type>	< day_type * B15_Accommodation_per >	<day_type* children=""></day_type*>				
	<>: p<0.05							

Adding additional features: $R^2 = 0.580$

(yearly average data: gdp, green gas emission from different sections)

EPFL **Model – Interpretation (with baseline model)**

Predicted Values

•

•

Model

Wang **Decomposition of the residuals** Weather Features Urban Form Features Time Features - 30000 - 30000 30000 4 - 25000 $R^2 = 0.4404$ - 25000 Weather features: $R^2 = 0.0097$ $R^2 = 0.0738$ 25000 - 20000 등 - 20000 - 등 20000 duals s 2 als 2 2 15000 E 15000 15000 cc, speed_u, speed_v, rh, 10000 10000 0 10000 8 temp K, ws 1 5000 5000 - 5000 -2 -2 Πo Time features: -1.5-1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 Predicted Values Predicted Values Predicted Values day_type, morning_peak, Weather + Time Features Urban Form Features + Population Time Features + Population 30000 30000 30000 lunch peak, evening peak 4 - 25000 - 25000 25000 $R^2 = 0.4480$ $R^2 = 0.1460$ $R^2 = 0.0762$ - 20000 - 등 - 20000 등 - 20000 - 등 siduals esiduals 2 2 iduals 2 Population features: 15000 15000 i i 15000 0 10000 2 10000 2 10000 2 COLC. S. PopSum, Men, Women, Elderly, 5000 5000 - 5000 -2 -2 Youth, Children Шn 1.0 1.0 -1.5-1.0-0.50.0 0.5 1.5 -1.5-1.0-0.50.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.5 Predicted Values Predicted Values Predicted Values Weather + Time + Population Features Urban Form Features + Population + Time Population Features - 30000 30000 30000 - 25000 - 25000 25000 $R^2 = 0.5218$ R² = 0.0721 $R^2 = 0.1483$ - 20000 등 - 20000 등 20000 등 Residuals 2 Residuals 2 sesiduals 2 15000 = 15000 15000 TOG 10000 3 10000 2 10000 2 init C. 5000 5000 - 5000 -2 ш. Πŋ -15 -1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 -15 -1.0-0.50.0 0.5 1.0 1.5 Predicted Values Predicted Values Predicted Values Weather + Time + Population + Urban Form Features Urban Form Features + Population + Time + Weather Population Features + Weather 30000 30000 30000 - 25000 - 25000 25000 $R^2 = 0.0818$ $R^2 = 0.5234$ $R^2 = 0.5234$ - 20000 - 등 - 20000 - 등 20000 2 - 15000 - E 15000 + 15000 10000 2 10000 2 10000 3 5000 5000 5000 -2 -2 -2 -1.5 -1.0-0.5 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0 0.0 1.5 -1.51.5 -1.51.5

Predicted Values

Predicted Values

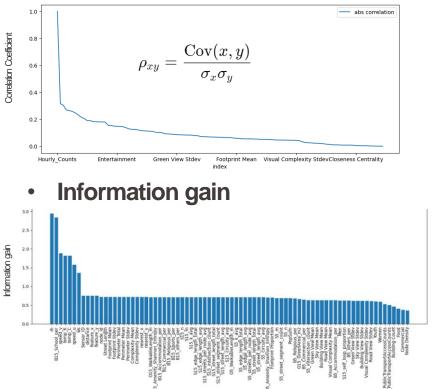
16

EPFL Model – Attempt to lower the feature dimension (baseline model)

Baseline model: R² = 0.523

Correlation analysis

Sorted Correlation Coefficients between Features and Pedestrian Count



Rule out the features with correlation coefficient < 0.01

➡ R² = 0.509

cc, S5_edge_length_avg, S5_street_length_avg, S5_circuity_avg,
S15_self_loop_proportion, Closeness Centrality, B5_others_per,
B5_Accommodation_per, Institutional, speed_u, distance, Building
View Stdev, Clustering (Weighted): 13

Rule out the features with information gain < 0.04

R² = 0.507

Helthcare, day_type, lunch_peak, Degree, Clustering(Weighted), Institutional, Civic, evening_peak, Clustering, Eigenvector Centrality, PageRank, Social, n: 14

17

- EPFL Summary
 - Explored and analyzed urban features from open datasets.
 - Developed mathematical models statistically explaining the spatial-temporal relationship between pedestrian flow and different groups of features.
 - Implemented traditional machine learning techniques, improving the model R² up to 0.580, with Luis F. Miranda-Moreno et al.^[1] highest R² = 0.60.

Yihan Wang